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3 Scientific Progress and Accomplishments

3.1 Introduction and Overview

Problems involving massive amounts of data arise naturally in a variety of disciplines, such as
spatial databases, geographic information systems, text repositories, string databases, constraint
logic programming, object-oriented databases, statistics, virtual reality systems, and computer
graphics. NASA’s Earth Observing System project, the core part of the Earth Science Enterprise
(formerly Mission to Planet Earth), produces petabytes (10!° bytes) of raster data per year! A
major challenge is to develop mechanisms for processing the data efficiently, or else much of it will
be useless.

The bottleneck in many applications that process massive amounts of data is the I/O communi-
cation between internal memory and external memory. The bottleneck is accentuated as processors
get faster and parallel processors are used. Parallel disk arrays are often used to increase the I/0
bandwidth. The goal of this proposal is to deepen our understanding of the limits of I/O systems
and to construct external memory algorithms that are provably efficient. The three measures of
performance are number of I/Os, disk storage space, and CPU time. Even when the data fit entirely
in memory, communication can still be the bottleneck, and the related issues of caching become
important.

Theoretical work involves development and analysis of provably efficient external memory al-
gorithms and cache-efficient algorithms for a variety of important application areas. In [5], we give
a broad survey of the state of the art in the design and analysis of external memory algorithms
and data structures. We address several batched and on-line problems, involving text databases,
prefetching and streaming data from parallel disks, and database selectivity estimation. Our ex-
perimental validation uses our TPIE programming environment.

3.2 Research Results
3.2.1 Parallel Disks

Technology trends indicate that developing techniques that effectively use multiple disks in parallel
in order to speed up the performance of external sorting is of prime importance. In [2], we look at
the simple randomized merging (SRM) mergesort algorithm that we earlier showed to be the first
parallel disk sorting algorithm that requires a provably optimal number of passes and that is fast
in practice. Knuth (in the new edition of The Art of Computer Programming, Vol. 3: Sorting and
Searching) recently identified SRM (which he calls “randomized striping”) as the method of choice
for sorting with parallel disks. In [2], we present an efficient implementation of SRM, based upon
novel data structures. We give a new implementation for SRM’s lookahead forecasting technique
for parallel prefetching and its forecast and flush technique for buffer management. Our techniques




amount to a significant improvement in the way SRM carries out the parallel, independent disk
accesses necessary to efficiently read blocks of input runs during external merging.

We present the performance of SRM over a wide range of input sizes and compare its per-
formance with that of disk-striped mergesort (DSM), the commonly used technique to implement
external mergesort on D parallel disks. DSM consists of using a standard mergesort algorithm
in conjunction with striped I/O for parallel disk access. SRM merges together significantly more
runs at a time compared with DSM, and thus it requires fewer merge passes. We demonstrate in
practical scenarios that even though the streaming speeds for merging with DSM are a little higher
than those for SRM (since DSM merges fewer runs at a time), sorting using SRM is significantly
faster than with DSM, since SRM requires fewer passes.

The techniques in this paper can be generalized to meet the load-balancing requirements of
other applications using parallel disks, including distribution sort, multiway partitioning of a file
into several other files. and some potential multimedia streaming applications.

3.2.2 XML Databases

The extensible mark-up language (XML) is gaining widespread use as a format for data exchange
and storage on the World Wide Web. Queries over XML data require accurate selectivity estima-
tion of path expressions to optimize query execution plans. Selectivity estimation of XML path
expression is usually done based on summary statistics about the structure of the underlying XML
repository. All previous methods require an off-line scan of the XML repository to collect the
statistics.

In (6], we propose XPathLearner, a method for estimating selectivity of the most commonly
used types of path expressions without looking at the XML data. XPathLearner gathers and re-
fines the statistics using query feedback in an on-line manner and is especially suited to queries in
Internet scale applications since the underlying XML repositories are likely to be inaccessible or
too large to be scanned entirely. Besides the on-line property, our method also has two other novel
features: (a) XPathLearner is workload aware in collecting the statistics and thus can be dramati-
cally more accurate than the more costly off-line method under tight memory constraints, and (b)
XPathLearner automatically adjusts the statistics using query feedback when the underlying XML
data change. We show empirically the estimation accuracy of our method using several real data
sets.

3.2.3 Streaming Algorithms

In [1], we investigate the problem of smoothing multiplexed network traffic, when either a streaming
server transmits data to multiple clients, or a server accesses data from multiple storage devices
or other servers. We introduce efficient algorithms for lexicographically optimally smoothing the
aggregate bandwidth requirements over a shared network link. In the data transmission problem, we
consider the case in which the clients have different buffer capacities but no bandwidth constraints,
or no buffer capacities but different bandwidth constraints. For the data access problem, we handle
the general case of a shared buffer capacity and individual network bandwidth constraints. Previous
approaches in the literature for the data access problem handled either the case of only a single
stream or did not compute the lexicographically optimal schedule.

Lexicographically optimal smoothing (lezopt smoothing) has several advantages. By provably
minimizing the variance of the required aggregate bandwidth, maximum resource requirements
within the network become more predictable, and useful resource utilization increases. Fairness in
sharing a network link by multiple users can be improved, and new requests from future clients




are more likely to be successfully admitted without the need for frequently rescheduling previously
accepted traffic. Efficient resource management at the network edges can better meet quality of
service requirements without restricting the scalability of the system.

3.2.4 Space-Efficient Indexes for Text Databases

The proliferation of online text, such as on the World Wide Web and in databases, motivates the
need for space-efficient text indexing methods that support fast string searching. In this scenario,
consider a text T that is made up of n symbols drawn from a fixed alphabet X and that is represented
in nlog|%| bits by encoding each symbol with log|Z| bits. The goal is to support quick search
queries of any string pattern P of m symbols, with T" being fully scanned only once, namely, when
the index is created.

Text indexing schemes published in the literature are greedy of space and require additional
Q(nlogn) bits in the worst case. For example, suffix trees and suffix arrays need 2(n) memory
words of Q(logn) bits in the standard unit cost RAM. These indexes are larger than the text itself
by a factor of Q(log;s| n), which is significant when ¥ is of constant size, such as ASCII or UNICODE.
On the other hand, they support fast searching either in O(m log |Z|) time or in O(m +logn) time,
plus an output-sensitive cost O(occ) for listing the pattern occurrences.

In [4], we present a new text index that is based upon new compressed representations of suffix
arrays and suffix trees. It achieves O(m/logg|n + logjy n) search time in the worst case, for any
constant 0 < € < 1, with at most (¢~ + O(1)) nlog|Z| bits of storage; that is, the index size is
comparable to the text size in the worst case. The above bounds improve both time and space of
previous indexing schemes. Listing the pattern occurrences introduces a sublogarithmic slowdown
factor in the output-sensitive cost, giving O(occ logjs; n) time as a result. When the patterns are
sufficiently long, namely, for m = Q((log?*¢ n)(logs logn)), we can use auxiliary data structures
in O(nlog|%|) bits to obtain a total search bound of O(m/ log)sn + occ) time, which is optimal.

3.2.5 Entropy-Compressed Text Indexes

In [3] we continue our work on space-efficient indexes and present a novel implementation of
compressed suffix arrays exhibiting new tradeoffs between search time and space occupancy for
a given text (or sequence) of n symbols over an alphabet X, where each symbol is encoded by
lg || bits. We show that compressed suffix arrays use just nHj + O(nlglgn/lgs n) bits, while
retaining full text indexing functionalities, such as searching any pattern sequence of length m in
O(m1g|%| + polylog(n)) time. The term Hj, < g || denotes the hth-order empirical entropy of the
text, which means that our index is nearly optimal in space apart from lower-order terms, achieving
asymptotically the empirical entropy of the text (with a multiplicative constant 1). If the text is
highly compressible so that Hy, = o(1) and the alphabet size is small, we obtain a text index with
o(m) search time that requires only o(n) bits. We also report further results and tradeoffs on on
high-order entropy-compressed text indexes.

4 Technology Transfer

We plan to pursue the practical applications of space-efficient search indexes. Implementation is
ongoing. '

Our efforts are also having an impact internationally. We have had discussions about the
feasibility of adding parallel disk capabilities to the LEDA project at Max Planck in Saarbruecken,
Germany.




